Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(3): 109261, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38433898

RESUMO

Mosquitoes, particularly Aedes aegypti, are critical vectors for globally significant pathogenic viruses. This study examines the limitations of oral RNA interference (RNAi) as a strategy to disrupt viral transmission by Ae. aegypti. We hypothesized that double-stranded RNA (dsRNA) targeting the Zika virus (ZIKV) or chikungunya virus (CHIKV) genomes produced by engineered bacterial symbionts could trigger an antiviral response. Mosquitoes mono-colonized with Escherichia coli producing dsZIK or dsCHIK did not display reduced viral titers following exposure to virus-contaminated bloodmeals and failed to generate dsZIK- or dsCHIK-derived small interfering RNAs. To address potential limitations of bacterial dsRNA release, we explored dsRNA inoculation via feeding and injection. Although viral replication was impeded in mosquitoes injected with dsZIK or dsCHIK, no antiviral effect was observed in dsRNA-fed mosquitoes. These findings highlight complexities of implementing oral RNAi as an antiviral strategy in Ae. aegypti and warrant further exploration of local and systemic RNAi mechanisms.

2.
Cell Rep ; 42(8): 112977, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37573505

RESUMO

Arthropod-borne viruses (arboviruses) transmitted by Aedes aegypti mosquitoes are an increasing threat to global health. The small interfering RNA (siRNA) pathway is considered the main antiviral immune pathway of insects, but its effective impact on arbovirus transmission is surprisingly poorly understood. Here, we use CRISPR-Cas9-mediated gene editing in vivo to mutate Dicer2, a gene encoding the RNA sensor and key component of the siRNA pathway. The loss of Dicer2 enhances early viral replication and systemic viral dissemination of four medically significant arboviruses (chikungunya, Mayaro, dengue, and Zika viruses) representing two viral families. However, Dicer2 mutants and wild-type mosquitoes display overall similar levels of vector competence. In addition, Dicer2 mutants undergo significant virus-induced mortality during infection with chikungunya virus. Together, our results define a multifaceted role for Dicer2 in the transmission of arboviruses by Ae. aegypti mosquitoes and pave the way for further mechanistic investigations.


Assuntos
Aedes , Arbovírus , Infecção por Zika virus , Zika virus , Animais , Humanos , Arbovírus/genética , Arbovírus/metabolismo , Mosquitos Vetores , Zika virus/genética , RNA Interferente Pequeno/metabolismo
3.
Elife ; 122023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688360

RESUMO

Total RNA sequencing (RNA-seq) is an important tool in the study of mosquitoes and the RNA viruses they vector as it allows assessment of both host and viral RNA in specimens. However, there are two main constraints. First, as with many other species, abundant mosquito ribosomal RNA (rRNA) serves as the predominant template from which sequences are generated, meaning that the desired host and viral templates are sequenced far less. Second, mosquito specimens captured in the field must be correctly identified, in some cases to the sub-species level. Here, we generate mosquito rRNA datasets which will substantially mitigate both of these problems. We describe a strategy to assemble novel rRNA sequences from mosquito specimens and produce an unprecedented dataset of 234 full-length 28S and 18S rRNA sequences of 33 medically important species from countries with known histories of mosquito-borne virus circulation (Cambodia, the Central African Republic, Madagascar, and French Guiana). These sequences will allow both physical and computational removal of rRNA from specimens during RNA-seq protocols. We also assess the utility of rRNA sequences for molecular taxonomy and compare phylogenies constructed using rRNA sequences versus those created using the gold standard for molecular species identification of specimens-the mitochondrial cytochrome c oxidase I (COI) gene. We find that rRNA- and COI-derived phylogenetic trees are incongruent and that 28S and concatenated 28S+18S rRNA phylogenies reflect evolutionary relationships that are more aligned with contemporary mosquito systematics. This significant expansion to the current rRNA reference library for mosquitoes will improve mosquito RNA-seq metagenomics by permitting the optimization of species-specific rRNA depletion protocols for a broader range of species and streamlining species identification by rRNA sequence and phylogenetics.


Assuntos
Culicidae , Metagenômica , Animais , RNA Ribossômico 18S/genética , Filogenia , Mosquitos Vetores/genética , RNA Ribossômico 28S/genética , Culicidae/genética
4.
Microorganisms ; 9(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34442731

RESUMO

Palm Creek virus (PCV) is an insect-specific flavivirus that can interfere with the replication of mosquito-borne flaviviruses in Culex mosquitoes, thereby potentially reducing disease transmission. We examined whether PCV could interfere with arbovirus replication in Aedes (Ae.) aegypti and Ae. albopictus mosquitoes, major vectors for many prominent mosquito-borne viral diseases. We infected laboratory colonies of Ae. aegypti and Ae. albopictus with PCV to evaluate infection dynamics. PCV infection was found to persist to at least 21 days post-infection and could be detected in the midguts and ovaries. We then assayed for PCV-arbovirus interference by orally challenging PCV-infected mosquitoes with Zika and chikungunya viruses. For both arboviruses, PCV infection had no effect on infection and transmission rates, indicating limited potential as a method of intervention for Aedes-transmitted arboviruses. We also explored the hypothesis that PCV-arbovirus interference is mediated by the small interfering RNA pathway in silico. Our findings indicate that RNA interference is unlikely to underlie the mechanism of arbovirus inhibition and emphasise the need for empirical examination of individual pairs of insect-specific viruses and arboviruses to fully understand their impact on arbovirus transmission.

5.
Cell Rep ; 33(11): 108506, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33326778

RESUMO

Transgenerational immune priming (TGIP) allows memory-like immune responses to be transmitted from parents to offspring in many invertebrates. Despite increasing evidence for TGIP in insects, the mechanisms involved in the transfer of information remain largely unknown. Here, we show that Drosophila melanogaster and Aedes aegypti transmit antiviral immunological memory to their progeny that lasts throughout generations. We observe that TGIP, which is virus and sequence specific but RNAi independent, is initiated by a single exposure to disparate RNA viruses and also by inoculation of a fragment of viral double-stranded RNA. The progeny, which inherit a viral DNA that is only a fragment of the viral RNA used to infect the parents, display enriched expression of genes related to chromatin and DNA binding. These findings represent a demonstration of TGIP for RNA viruses in invertebrates, broadly increasing our understanding of the immune response, host genome plasticity, and antiviral memory of the germline.


Assuntos
Aedes/virologia , Antivirais/imunologia , Drosophila melanogaster/virologia , Memória Imunológica/imunologia , Animais , Insetos
6.
Curr Biol ; 30(18): 3495-3506.e6, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32679098

RESUMO

Endogenous viral elements (EVEs) are viral sequences integrated in host genomes. A large number of non-retroviral EVEs was recently detected in Aedes mosquito genomes, leading to the hypothesis that mosquito EVEs may control exogenous infections by closely related viruses. Here, we experimentally investigated the role of an EVE naturally found in Aedes aegypti populations and derived from the widespread insect-specific virus, cell-fusing agent virus (CFAV). Using CRISPR-Cas9 genome editing, we created an Ae. aegypti line lacking the CFAV EVE. Absence of the EVE resulted in increased CFAV replication in ovaries, possibly modulating vertical transmission of the virus. Viral replication was controlled by targeting of viral RNA by EVE-derived P-element-induced wimpy testis-interacting RNAs (piRNAs). Our results provide evidence that antiviral piRNAs are produced in the presence of a naturally occurring EVE and its cognate virus, demonstrating a functional link between non-retroviral EVEs and antiviral immunity in a natural insect-virus interaction.


Assuntos
Aedes/genética , Aedes/virologia , Flavivirus/genética , Genoma de Inseto , RNA Interferente Pequeno/genética , Replicação Viral , Animais , Feminino , Flavivirus/classificação , Flavivirus/isolamento & purificação , RNA Viral/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
Viruses ; 12(4)2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326240

RESUMO

The mosquito antiviral response has mainly been studied in the context of arthropod-borne virus (arbovirus) infection in female mosquitoes. However, in nature, both female and male mosquitoes are frequently infected with insect-specific viruses (ISVs). ISVs are capable of infecting the reproductive organs of both sexes and are primarily maintained by vertical transmission. Since the RNA interference (RNAi)-mediated antiviral response plays an important antiviral role in mosquitoes, ISVs constitute a relevant model to study sex-dependent antiviral responses. Using a naturally generated viral stock containing three distinct ISVs, Aedes flavivirus (AEFV), Menghai rhabdovirus (MERV), and Shinobi tetra virus (SHTV), we infected adult Aedes albopictus females and males and generated small RNA libraries from ovaries, testes, and the remainder of the body. Overall, both female and male mosquitoes showed unique small RNA profiles to each co-infecting ISV regardless of the sex or tissue tested. While all three ISVs generated virus-derived siRNAs, only MERV generated virus-derived piRNAs. We also studied the expression of PIWI genes in reproductive tissues and carcasses. In contrast to Piwi5-9, Piwi1-4 were abundantly expressed in ovaries and testes, suggesting that Piwi5-9 are involved in exogenous viral piRNA production. Together, our results show that ISV-infected Aedes albopictus produce viral small RNAs in a virus-specific manner and that male mosquitoes mount a similar small RNA-mediated antiviral response to that of females.


Assuntos
Aedes/genética , Aedes/virologia , Coinfecção , Interações Hospedeiro-Patógeno/genética , Vírus de Insetos/fisiologia , Pequeno RNA não Traduzido , Animais , Linhagem Celular , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Mosquitos Vetores/genética , Mosquitos Vetores/virologia , Transcriptoma
8.
iScience ; 23(2): 100870, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32059176

RESUMO

Diseases caused by mosquito-borne viruses have been on the rise for the last decades, and novel methods aiming to use laboratory-engineered mosquitoes that are incapable of carrying viruses have been developed to reduce pathogen transmission. This has stimulated efforts to identify optimal target genes that are naturally involved in mosquito antiviral defenses or required for viral replication. Here, we investigated the role of a member of the Tudor protein family, Tudor-SN, upon dengue virus infection in the mosquito Aedes aegypti. Tudor-SN knockdown reduced dengue virus replication in the midgut of Ae. aegypti females. In immunofluorescence assays, Tudor-SN localized to the nucleolus in both Ae. aegypti and Aedes albopictus cells. A reporter assay and small RNA profiling demonstrated that Tudor-SN was not required for RNA interference function in vivo. Collectively, these results defined a novel proviral role for Tudor-SN upon early dengue virus infection of the Ae. aegypti midgut.

9.
Nat Microbiol ; 3(12): 1394-1403, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30374170

RESUMO

Immune responses in insects are differentially triggered depending on the infection route used by the pathogen. In most studies involving Drosophila melanogaster and viruses, infection is done by injection, while oral infection, which is probably the most common route of viral entry in nature, remains unexplored. Here, we orally infected adults and larvae from wild-type and RNA interference (RNAi) mutant flies with different RNA viruses. We found that, in contrast with what is observed following virus injection, oral infections initiated at larval or adult stages are cleared in adult flies. Virus elimination occurred despite a larger infectious dose than for injected flies and evidence of viral replication. RNAi mutant flies suffered greater mortality relative to wild-type flies following oral infection, but they also eliminated the virus, implying that RNAi is not essential for viral clearance and that other immune mechanisms act during oral infections. We further showed that information of infection by RNA viruses acquired orally leaves a trace under a DNA form, which confers protection against future reinfection by the same virus. Together, this work presents evidence of clearance and immune priming for RNA viruses in insects and challenges the current view of antiviral immunity in insects.


Assuntos
Drosophila melanogaster/imunologia , Drosophila melanogaster/virologia , Interferência de RNA/imunologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , Vírus de RNA/patogenicidade , Animais , Antivirais/imunologia , Antivirais/farmacologia , Proteínas Argonautas/genética , Proteínas Argonautas/imunologia , DNA Viral/imunologia , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/imunologia , Feminino , Larva/virologia , Masculino , RNA Helicases/genética , RNA Helicases/imunologia , Ribonuclease III/genética , Ribonuclease III/imunologia , Análise de Sobrevida , Replicação Viral
10.
Cell Host Microbe ; 23(3): 353-365.e8, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29503180

RESUMO

The RNAi pathway confers antiviral immunity in insects. Virus-specific siRNA responses are amplified via the reverse transcription of viral RNA to viral DNA (vDNA). The nature, biogenesis, and regulation of vDNA are unclear. We find that vDNA produced during RNA virus infection of Drosophila and mosquitoes is present in both linear and circular forms. Circular vDNA (cvDNA) is sufficient to produce siRNAs that confer partially protective immunity when challenged with a cognate virus. cvDNAs bear homology to defective viral genomes (DVGs), and DVGs serve as templates for vDNA and cvDNA synthesis. Accordingly, DVGs promote the amplification of vDNA-mediated antiviral RNAi responses in infected Drosophila. Furthermore, vDNA synthesis is regulated by the DExD/H helicase domain of Dicer-2 in a mechanism distinct from its role in siRNA generation. We suggest that, analogous to mammalian RIG-I-like receptors, Dicer-2 functions like a pattern recognition receptor for DVGs to modulate antiviral immunity in insects.


Assuntos
Antivirais/imunologia , DNA Viral/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/imunologia , RNA Helicases/metabolismo , Vírus de RNA/imunologia , Ribonuclease III/metabolismo , Animais , Arbovírus/imunologia , Arbovírus/patogenicidade , Culicidae/imunologia , RNA Helicases DEAD-box/metabolismo , Proteínas de Drosophila/genética , Genes Virais/genética , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Mutação Puntual , RNA Helicases/genética , Interferência de RNA/imunologia , Infecções por Vírus de RNA , Vírus de RNA/genética , Vírus de RNA/patogenicidade , RNA Interferente Pequeno/genética , RNA Viral/metabolismo , Ribonuclease III/genética , Carga Viral , Replicação Viral
11.
PLoS Negl Trop Dis ; 11(12): e0006152, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29261661

RESUMO

Dengue virus (DENV) causes more human infections than any other mosquito-borne virus. The current lack of antiviral strategies has prompted genome-wide screens for host genes that are required for DENV infectivity. Earlier transcriptomic studies that identified DENV host factors in the primary vector Aedes aegypti used inbred laboratory colonies and/or pools of mosquitoes that erase individual variation. Here, we performed transcriptome sequencing on individual midguts in a field-derived Ae. aegypti population to identify new candidate host factors modulating DENV replication. We analyzed the transcriptomic data using an approach that accounts for individual co-variation between viral RNA load and gene expression. This approach generates a prediction about the agonist or antagonist effect of candidate genes on DENV replication based on the sign of the correlation between gene expression and viral RNA load. Using this method, we identified 39 candidate genes that went undetected by conventional pairwise comparison of gene expression levels between DENV-infected midguts and uninfected controls. Only four candidate genes were detected by both methods, emphasizing their complementarity. We demonstrated the value of our approach by functional validation of a candidate agonist gene encoding a sterol regulatory element-binding protein (SREBP), which was identified by correlation analysis but not by pairwise comparison. We confirmed that SREBP promotes DENV infection in the midgut by RNAi-mediated gene knockdown in vivo. We suggest that our approach for transcriptomic analysis can empower genome-wide screens for potential agonist or antagonist factors by leveraging inter-individual variation in gene expression. More generally, this method is applicable to a wide range of phenotypic traits displaying inter-individual variation.


Assuntos
Aedes/virologia , Vírus da Dengue/genética , Dengue/virologia , Insetos Vetores/virologia , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Transcriptoma , Animais , Sistema Digestório/virologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Insetos/genética , Interferência de RNA , RNA Viral/análise , Carga Viral , Replicação Viral
12.
J Virol ; 91(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539440

RESUMO

Endogenous viral elements derived from nonretroviral RNA viruses have been described in various animal genomes. Whether they have a biological function, such as host immune protection against related viruses, is a field of intense study. Here, we investigated the repertoire of endogenous flaviviral elements (EFVEs) in Aedes mosquitoes, the vectors of arboviruses such as dengue and chikungunya viruses. Previous studies identified three EFVEs from Aedes albopictus cell lines and one from Aedes aegypti cell lines. However, an in-depth characterization of EFVEs in wild-type mosquito populations and individual mosquitoes in vivo has not been performed. We detected the full-length DNA sequence of the previously described EFVEs and their respective transcripts in several A. albopictus and A. aegypti populations from geographically distinct areas. However, EFVE-derived proteins were not detected by mass spectrometry. Using deep sequencing, we detected the production of PIWI-interacting RNA-like small RNAs, in an antisense orientation, targeting the EFVEs and their flanking regions in vivo The EFVEs were integrated in repetitive regions of the mosquito genomes, and their flanking sequences varied among mosquito populations. We bioinformatically predicted several new EFVEs from a Vietnamese A. albopictus population and observed variation in the occurrence of those elements among mosquitoes. Phylogenetic analysis of an A. aegypti EFVE suggested that it integrated prior to the global expansion of the species and subsequently diverged among and within populations. The findings of this study together reveal the substantial structural and nucleotide diversity of flaviviral integrations in Aedes genomes. Unraveling this diversity will help to elucidate the potential biological function of these EFVEs.IMPORTANCE Endogenous viral elements (EVEs) are whole or partial viral sequences integrated in host genomes. Interestingly, some EVEs have important functions for host fitness and antiviral defense. Because mosquitoes also have EVEs in their genomes, characterizing these EVEs is a prerequisite for their potential use to manipulate the mosquito antiviral response. In the study described here, we focused on EVEs related to the Flavivirus genus, to which dengue and Zika viruses belong, in individual Aedes mosquitoes from geographically distinct areas. We show the existence in vivo of flaviviral EVEs previously identified in mosquito cell lines, and we detected new ones. We show that EVEs have evolved differently in each mosquito population. They produce transcripts and small RNAs but not proteins, suggesting a function at the RNA level. Our study uncovers the diverse repertoire of flaviviral EVEs in Aedes mosquito populations and contributes to an understanding of their role in the host antiviral system.


Assuntos
Aedes/genética , Aedes/virologia , DNA Viral/análise , Flavivirus/genética , Genoma de Inseto , RNA Viral/análise , Animais , Biologia Computacional , DNA Viral/genética , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Espectrometria de Massas , RNA Viral/genética , Recombinação Genética , Proteínas Virais/análise , Integração Viral
13.
Nucleic Acids Res ; 45(8): 4881-4892, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28115625

RESUMO

The piRNA pathway is of key importance in controlling transposable elements in most animal species. In the vector mosquito Aedes aegypti, the presence of eight PIWI proteins and the accumulation of viral piRNAs upon arbovirus infection suggest additional functions of the piRNA pathway beyond genome defense. To better understand the regulatory potential of this pathway, we analyzed in detail host-derived piRNAs in A. aegypti Aag2 cells. We show that a large repertoire of protein-coding genes and non-retroviral integrated RNA virus elements are processed into genic piRNAs by different combinations of PIWI proteins. Among these, we identify a class of genes that produces piRNAs from coding sequences in an Ago3- and Piwi5-dependent fashion. We demonstrate that the replication-dependent histone gene family is a genic source of ping-pong dependent piRNAs and that histone-derived piRNAs are dynamically expressed throughout the cell cycle, suggesting a role for the piRNA pathway in the regulation of histone gene expression. Moreover, our results establish the Aag2 cell line as an accessible experimental model to study gene-derived piRNAs.


Assuntos
Aedes/genética , Proteínas Argonautas/genética , Histonas/genética , RNA Interferente Pequeno/genética , Animais , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Regulação da Expressão Gênica , RNA Interferente Pequeno/biossíntese
14.
Nat Commun ; 7: 12410, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27580708

RESUMO

Mosquitoes develop long-lasting viral infections without substantial deleterious effects, despite high viral loads. This makes mosquitoes efficient vectors for emerging viral diseases with enormous burden on public health. How mosquitoes resist and/or tolerate these viruses is poorly understood. Here we show that two species of Aedes mosquitoes infected with two arboviruses from distinct families (dengue or chikungunya) generate a viral-derived DNA (vDNA) that is essential for mosquito survival and viral tolerance. Inhibition of vDNA formation leads to extreme susceptibility to viral infections, reduction of viral small RNAs due to an impaired immune response, and loss of viral tolerance. Our results highlight an essential role of vDNA in viral tolerance that allows mosquito survival and thus may be important for arbovirus dissemination and transmission. Elucidating the mechanisms of mosquito tolerance to arbovirus infection paves the way to conceptualize new antivectorial strategies to selectively eliminate arbovirus-infected mosquitoes.


Assuntos
Aedes/virologia , Arbovírus/genética , Vírus Chikungunya/genética , DNA Viral/genética , Vírus da Dengue/genética , Mosquitos Vetores/virologia , Animais , Linhagem Celular , Febre de Chikungunya/transmissão , Febre de Chikungunya/virologia , Vírus Chikungunya/crescimento & desenvolvimento , Chlorocebus aethiops , Cricetinae , DNA Viral/biossíntese , Dengue/transmissão , Dengue/virologia , Vírus da Dengue/crescimento & desenvolvimento , Interferência de RNA , RNA Viral/biossíntese , RNA Viral/genética , Células Vero , Carga Viral
15.
Proc Natl Acad Sci U S A ; 113(29): E4218-27, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27357659

RESUMO

Since its discovery, RNA interference has been identified as involved in many different cellular processes, and as a natural antiviral response in plants, nematodes, and insects. In insects, the small interfering RNA (siRNA) pathway is the major antiviral response. In recent years, the Piwi-interacting RNA (piRNA) pathway also has been implicated in antiviral defense in mosquitoes infected with arboviruses. Using Drosophila melanogaster and an array of viruses that infect the fruit fly acutely or persistently or are vertically transmitted through the germ line, we investigated in detail the extent to which the piRNA pathway contributes to antiviral defense in adult flies. Following virus infection, the survival and viral titers of Piwi, Aubergine, Argonaute-3, and Zucchini mutant flies were similar to those of wild type flies. Using next-generation sequencing of small RNAs from wild type and siRNA mutant flies, we showed that no viral-derived piRNAs were produced in fruit flies during different types of viral infection. Our study provides the first evidence, to our knowledge, that the piRNA pathway does not play a major role in antiviral defense in adult Drosophila and demonstrates that viral-derived piRNA production depends on the biology of the host-virus combination rather than being part of a general antiviral process in insects.


Assuntos
Drosophila melanogaster/imunologia , Drosophila melanogaster/virologia , Interações Hospedeiro-Patógeno , RNA Interferente Pequeno/genética , Vírus/genética , Animais , Interferência de RNA , Vírus/patogenicidade
16.
BMC Res Notes ; 8: 782, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26667652

RESUMO

BACKGROUND: The hypothesis of an infectious etiology of the formerly named bronchiolo-alveolar carcinoma (BAC) has raised controversy. We investigated tumor lung tissues from five patients with former BAC histology using high-throughput sequencing technologies to discover potential viruses present in this type of lung cancer. Around 180 million single reads of 100 bases were generated for each BAC sample. RESULTS: None of the reads showed a significant similarity for Jaagsiekte sheep retrovirus (JSRV) and no other viruses were found except for endogenous retroviruses. CONCLUSIONS: In conclusion, we have demonstrated the absence of JSRV and other known human viruses in five samples of well-characterized lepidic adenocarcinoma.


Assuntos
Adenocarcinoma Bronquioloalveolar/genética , Adenocarcinoma/genética , Retrovirus Endógenos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Retrovirus Jaagsiekte de Ovinos/genética , Neoplasias Pulmonares/genética , Adenocarcinoma/virologia , Adenocarcinoma Bronquioloalveolar/virologia , Idoso , Animais , Retrovirus Endógenos/fisiologia , Feminino , Humanos , Retrovirus Jaagsiekte de Ovinos/fisiologia , Pulmão/patologia , Pulmão/virologia , Neoplasias Pulmonares/virologia , Masculino , Pessoa de Meia-Idade , Adenomatose Pulmonar Ovina/genética , Adenomatose Pulmonar Ovina/virologia , Ovinos
17.
BMC Biol ; 12: 41, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24885329

RESUMO

BACKGROUND: Klebsiella pneumoniae strains are pathogenic to animals and humans, in which they are both a frequent cause of nosocomial infections and a re-emerging cause of severe community-acquired infections. K. pneumoniae isolates of the capsular serotype K2 are among the most virulent. In order to identify novel putative virulence factors that may account for the severity of K2 infections, the genome sequence of the K2 reference strain Kp52.145 was determined and compared to two K1 and K2 strains of low virulence and to the reference strains MGH 78578 and NTUH-K2044. RESULTS: In addition to diverse functions related to host colonization and virulence encoded in genomic regions common to the four strains, four genomic islands specific for Kp52.145 were identified. These regions encoded genes for the synthesis of colibactin toxin, a putative cytotoxin outer membrane protein, secretion systems, nucleases and eukaryotic-like proteins. In addition, an insertion within a type VI secretion system locus included sel1 domain containing proteins and a phospholipase D family protein (PLD1). The pld1 mutant was avirulent in a pneumonia model in mouse. The pld1 mRNA was expressed in vivo and the pld1 gene was associated with K. pneumoniae isolates from severe infections. Analysis of lipid composition of a defective E. coli strain complemented with pld1 suggests an involvement of PLD1 in cardiolipin metabolism. CONCLUSIONS: Determination of the complete genome of the K2 reference strain identified several genomic islands comprising putative elements of pathogenicity. The role of PLD1 in pathogenesis was demonstrated for the first time and suggests that lipid metabolism is a novel virulence mechanism of K. pneumoniae.


Assuntos
Genoma Bacteriano/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Família Multigênica , Fosfolipase D/genética , Fatores de Virulência/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Genes Bacterianos/genética , Ilhas Genômicas/genética , Klebsiella pneumoniae/isolamento & purificação , Metabolismo dos Lipídeos/genética , Camundongos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Mutagênese Insercional/genética , Fosfolipase D/química , Plasmídeos/genética , Alinhamento de Sequência , Virulência/genética
18.
Antimicrob Agents Chemother ; 58(7): 4207-10, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24752259

RESUMO

We report here the complete nucleotide sequence of two IncR replicons encoding multidrug resistance determinants, including ß-lactam (blaDHA-1, blaSHV-12), aminoglycoside (aphA1, strA, strB), and fluoroquinolone (qnrB4, aac6'-1b-cr) resistance genes. The plasmids have backbones that are similar to each other, including the replication and stability systems, and contain a wide variety of transposable elements carrying known antibiotic resistance genes. This study confirms the increasing clinical importance of IncR replicons as resistance gene carriers.


Assuntos
Elementos de DNA Transponíveis/genética , Genes MDR/genética , Klebsiella pneumoniae/genética , Fatores R/genética , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Sequência de Bases , Farmacorresistência Bacteriana Múltipla/genética , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Análise de Sequência de DNA , Resistência beta-Lactâmica/genética , beta-Lactamases/genética
19.
Genome Announc ; 1(1)2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23469338

RESUMO

We sequenced the genome of a clinical isolate of Yersinia enterocolitica (IP10393) from France. This strain belongs to bioserotype 4/O:3, which is the most common pathogenic subgroup worldwide. The draft genome has a size of 4,463,212 bp and a G+C content of 47.0%, and it is predicted to contain 4,181 coding sequences.

20.
Nat Immunol ; 14(4): 396-403, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23435119

RESUMO

How persistent viral infections are established and maintained is widely debated and remains poorly understood. We found here that the persistence of RNA viruses in Drosophila melanogaster was achieved through the combined action of cellular reverse-transcriptase activity and the RNA-mediated interference (RNAi) pathway. Fragments of diverse RNA viruses were reverse-transcribed early during infection, which resulted in DNA forms embedded in retrotransposon sequences. Those virus-retrotransposon DNA chimeras produced transcripts processed by the RNAi machinery, which in turn inhibited viral replication. Conversely, inhibition of reverse transcription hindered the appearance of chimeric DNA and prevented persistence. Our results identify a cooperative function for retrotransposons and antiviral RNAi in the control of lethal acute infection for the establishment of viral persistence.


Assuntos
Drosophila melanogaster/genética , Drosophila melanogaster/virologia , Interferência de RNA , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Transcrição Reversa , Animais , Sequência de Bases , Linhagem Celular , Vírus de DNA/química , Vírus de DNA/genética , Vírus de DNA/metabolismo , Modelos Animais de Doenças , Feminino , Ordem dos Genes , Modelos Biológicos , Dados de Sequência Molecular , Vírus de RNA/química , Vírus de RNA/metabolismo , RNA Interferente Pequeno/genética , Retroelementos , Carga Viral , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...